Fluidization Analysis of Thickening in the Deep Cone for Cemented Paste Backfill

Author:

Cheng Haiyong12,Liu Jin1,Wu Shunchuan12,Zhang Xiaoqiang12ORCID

Affiliation:

1. Faculty of Land Resources Engineering, Kunming University of Science and Technology, Kunming 650093, China

2. Key Laboratory of Ministry of Education of China for Efficient Mining and Safety of Metal Mines, Beijing 100083, China

Abstract

Cemented paste backfill (CPB) can effectively eliminate the risk of dam break in goaf and tailings pond which used tailings waste. Deep cone thickener (DCT) is an efficient machine for the system of paste preparation, and the concentration of slurry at the bottom is high and distributed unevenly, which will cause too much partial resistance and failure of thickener. Focusing on the above problems, fluidization design was conducted by using the fluidization theory. The delivery law of flocs was analyzed, and the isobaric surface was obtained. The equation of pressure and critical velocity of the ideal fluidized bed was acquired by analyzing the relationship between pressure and critical velocity. Based on the characteristics of tailings and distribution of the bonding zone, the arrangement, number, and working mode of spray nozzles were reformed. It is verified that the failure time of thickener decreased from 14 hours to 1 hour and the range of concentration increased from 74%∼78% to 78%∼80%, which improved the stability and reliability of DCT. The depth thickening mechanism is obtained, and the thickening method has been improved which provides a theoretical basis for the effective preparation of paste.

Funder

China Postdoctoral Science Foundation

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3