A New Numerical Procedure for Vibration Analysis of Beam under Impulse and Multiharmonics Piezoelectric Actuators

Author:

Belkourchia Yassin1ORCID,Azrar Lahcen12

Affiliation:

1. Research Center STIS, M2CS, Department of Applied Mathematics and Informatics, ENSET, Mohammed V University, Rabat, Morocco

2. Department of Mechanical Engineering, Faculty of Engineering, KAU, Jeddah, Saudi Arabia

Abstract

The dynamic behavior of structures with piezoelectric patches is governed by partial differential equations with strong singularities. To directly deal with these equations, well adapted numerical procedures are required. In this work, the differential quadrature method (DQM) combined with a regularization procedure for space and implicit scheme for time discretization is used. The DQM is a simple method that can be implemented with few grid points and can give results with a good accuracy. However, the DQM presents some difficulties when applied to partial differential equations involving strong singularities. This is due to the fact that the subsidiaries of the singular functions cannot be straightforwardly discretized by the DQM. A methodological approach based on the regularization procedure is used here to overcome this difficulty and the derivatives of the Dirac-delta function are replaced by regularized smooth functions. Thanks to this regularization, the resulting differential equations can be directly discretized using the DQM. The efficiency and applicability of the proposed approach are demonstrated in the computation of the dynamic behavior of beams for various boundary conditions and excited by impulse and Multiharmonics piezoelectric actuators. The obtained numerical results are well compared to the developed analytical solution.

Funder

King Abdulaziz University, Jeddah, Saudi Arabia

Publisher

Hindawi Limited

Subject

Applied Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Modeling and Simulation of Piezo-Composite Energy Harvesting from Beam Subjected to Moving Load;International Conference on Advanced Intelligent Systems for Sustainable Development;2023

2. Coupled Kansa and hybrid optimization methodological approach for Kolmogorov–Feller equations;Engineering Analysis with Boundary Elements;2022-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3