Study on the Deocclusion of the Visibility Window of Traffic Signs on a Curved Highway

Author:

Xiao Jian12ORCID,Zhao Jian1,Yang Liulin3,He Juanxia4,Li Yu3,Li Yuxiao4

Affiliation:

1. School of Traffic & Transportation Engineering, Changsha University of Science & Technology, Chiling Road, Tianxin Qu, Changsha 410205, Hunan, China

2. Guangxi Polytechnic of Construction, 6 Xiuling Road, Nanning 530004, Guangxi, China

3. College of Electrical Engineering, Guangxi University, Daxue E Rd, Xixiangtang Qu, Nanning 530000, Guangxi, China

4. School of Resource, Environment, and Materials, Guangxi University, Daxue E Rd, Xixiangtang Qu, Nanning 530000, Guangxi, China

Abstract

Highway navigation is often affected by complex topography, and the flat curve plays an important role in the horizontal alignment design of a highway. Many curves are formed, where visibility could be decreased. Thus, the indicative function of a traffic sign plays a crucial role in ensuring driving safety at the curve. Due to the blocked visibility, the probability of the traffic sign occlusion at the curve of operating highways is quite high. It is urgent to consider the clearing obstructions around traffic signs at curves during highway construction. In this study, the potential of visual occlusion for traffic signs on curved highways was investigated. Firstly, the driver’s visibility window that contains traffic signs was defined and criteria of visual occlusion were proposed. Secondly, a geometric occlusion design formula was established to mimic the visual recognition process of traffic signs on a curved highway, yielding the formula to calculate the visibility window. Finally, the occlusion design formula was applied into a case study of the Beijing-Hong Kong-Macau Expressway (Hunan section), in which visibility windows were calculated and analyzed. The obtained results verified the correctness and effectiveness of the occlusion design formula developed in this study.

Funder

Ministry of Education of the People's Republic of China

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3