Suppressive Effect of Quercetin on Nitric Oxide Production from Nasal Epithelial Cells In Vitro

Author:

Ebihara Nachi1,Takahashi Kana1,Takemura Haruka1,Akanuma Yuko1,Asano Kazuhito2ORCID,Sunagawa Masataka1ORCID

Affiliation:

1. Department of Physiology, School of Medicine, Showa University, Tokyo, Japan

2. Division of Physiology, School of Nursing and Rehabilitation Sciences, Showa University, Yokohama, Japan

Abstract

Nitric oxide (NO) is known to play pivotal roles as one of the final effector molecules in the development of allergic diseases, including allergic rhinitis (AR). Although quercetin has been reported to attenuate the clinical conditions of AR, its influence on NO production is not well defined. The present study aimed to examine the influence of quercetin on in vitro NO production from nasal epithelial cells after interleukin- (IL-) 4 stimulation. Human nasal epithelial cells (HNEpCs) at a concentration of 1 x 105 cells/ml were stimulated with 10.0 ng/ml of IL-4 in the presence and absence of quercetin. After 48 hours, the culture supernatants were collected and assayed for NO (NO2 and NO3) using the Griess method. The influences of quercetin on the transcription factor, STAT6, activation, and iNOS mRNA expression were also examined using ELISA and real-time quantitative RT-PCR, respectively. Addition of quercetin to cell cultures caused suppression of NO production from HNEpCs after IL-4 stimulation. The minimum concentration of quercetin that caused significant suppression was 1.0 nM. Treatment of cells with quercetin at more than 1.0 nM suppressed STAT6 activation and iNOS mRNA expression induced by IL-4 stimulation. The present results strongly suggested that quercetin favorably modified the clinical condition of AR through the suppression of NO production from nasal epithelial cells after IL-4 stimulation.

Publisher

Hindawi Limited

Subject

Complementary and alternative medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3