A Strategy for Automatic Performance Tuning of Stencil Computations on GPUs

Author:

Garvey Joseph D.1ORCID,Abdelrahman Tarek S.1ORCID

Affiliation:

1. Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada M5S 3G4

Abstract

We propose and evaluate a novel strategy for tuning the performance of a class of stencil computations on Graphics Processing Units. The strategy uses a machine learning model to predict the optimal way to load data from memory followed by a heuristic that divides other optimizations into groups and exhaustively explores one group at a time. We use a set of 104 synthetic OpenCL stencil benchmarks that are representative of many real stencil computations. We first demonstrate the need for auto-tuning by showing that the optimization space is sufficiently complex that simple approaches to determining a high-performing configuration fail. We then demonstrate the effectiveness of our approach on NVIDIA and AMD GPUs. Relative to a random sampling of the space, we find configurations that are 12%/32% faster on the NVIDIA/AMD platform in 71% and 4% less time, respectively. Relative to an expert search, we achieve 5% and 9% better performance on the two platforms in 89% and 76% less time. We also evaluate our strategy for different stencil computational intensities, varying array sizes and shapes, and in combination with expert search.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Hindawi Limited

Subject

Computer Science Applications,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Incremental Auto-Tuning for Hybrid Parallelization Using OpenCL;2023 IEEE 12th International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS);2023-09-07

2. Optimization Techniques for GPU Programming;ACM Computing Surveys;2023-03-16

3. Using Compiler Directives for Performance Portability in Scientific Computing: Kernels from Molecular Simulation;Accelerator Programming Using Directives;2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3