Collaborative Inversion of Soil Water Content in Alpine Meadow Area Based on Multitemporal Polarimetric SAR and Optical Remote Sensing Data

Author:

Kong Meng1ORCID,Zuo Xiaoqing1ORCID,Li Yongfa1ORCID

Affiliation:

1. Department of Surveying and Mapping, Institute of Land and Resources Engineering, Kunming University of Science and Technology, Kunming 650000, China

Abstract

Soil water content is a critical environmental parameter in research and practice, though various technological and contextual constraints limit its estimation in arid areas with vegetation cover. This study combined the multitemporal remote sensing data of Sentinel-1 and Landsat 8 to conduct an inversion study on surface soil water content under low vegetation cover in Nagqu, central Tibetan Plateau. Four vegetation indices (NDVI, ARVI, EVI, and RVI) were extracted from optical remote sensing data. A water cloud model was used to eliminate the influence of the vegetation layer on the backscattering coefficient associated with vegetation cover, and a predictive model suitable for the Nagqu area was constructed. The water cloud model effectively incorporated a vegetation index instead of vegetation water content. We found that VV polarization was more suitable for soil water content inversion than VH polarization. Among the four vegetation indices, the soil water content inversion model constructed with RVI under VV polarization had the best fit (R2 = 0.8212; RMSE = 6.30). The second-best fit was observed for vegetation water content-NDVI (R2 = 0.8201). The soil water content inversion models all had an R2 > 0.6, regardless of the vegetation index used, though the RVI had the best fitting effect, indicating that this vegetation index is highly applicable in the water cloud model, as a substitute for vegetation water content, and is expected to perform well in similar study sites.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3