Identifying Key MicroRNAs Targeted by Narenmandula in a Rodent Nephropathy Model

Author:

Wang Xiulan1,Chang Chun1,Jin Wenjie1,Arun Arun1,Sudunabuqi Sudunabuqi1,Aodaofu Aodaofu2,Liu Xiaowei2,Wu Fengjiao1,Chen Hongmei2ORCID

Affiliation:

1. Mongolia Medical Department of Inner Mongolia University for the Nationalities, Inner Mongolia Autonomous of China, Tongliao 028000, China

2. Affiliated Hospital of Inner Mongolia University for the Nationalities, Inner Mongolia Autonomous of China, Tongliao 028000, China

Abstract

Background. Untreated nephropathy can progress to renal failure. The traditional Mongolian remedy Narenmandula regulates the kidney “yang.” This study aimed to identify key microRNAs (miRNAs) targeted by Narenmandula in a rat model of nephropathy. Methods. Fifteen rats exhibiting normal renal function were randomized to three study arms. Nephropathy was induced in n = 10 rats using doxorubicin hydrochloride, followed by either Narenmandula treatment (treatment group) or no treatment (control group). In n = 5 rats, no doxorubicin was given and renal function remained unchanged (healthy group). Microarray analysis identified miRNAs which were differentially expressed (DE-miRNAs) between groups. Target genes of DE-miRNAs were predicted using miRWalk version 2.0, followed by enrichment analysis using DAVID, and construction of the miRNA coregulatory network using Cytoscape. Results. Nephropathy was successfully induced, with doxorubicin resulting in differential expression of 3645 miRNAs (1324 upregulated and 2321 downregulated). Narenmandula treatment induced differential expression of a total of 159 miRNAs (102 upregulated and 57 downregulated). Upregulated DE-miRNAs (e.g., miR-497-5p, miR-195-5p, miR-181a-5p, miR-181c-5p, and miR-30e-5p) and downregulated DE-miRNAs (e.g., miR-330-3p and miR-214-3p) regulated a high number of target genes. Moreover, the miRNA pairs (e.g., miR-195-5p—miR-497-5p, miR-181a-5p—miR-181c-5p, and miR-30e-5p—miR-30a-5p) coregulated a high number of genes. Enrichment analysis indicated functional synergy between miR-30e-5p—miR-30a-3p, miR-34a-5p—miR-30e-5p, miR-30e-5p—miR-195-3p, and miR-30a-3p—miR-195-3p pairs. Conclusion. Narenmandula may modulate doxorubicin-induced nephropathy via targeting miR-497-5p, miR-195-5p, miR-181a-5p, miR-181c-5p, miR-30e-5p, miR-330-3p, miR-214-3p, miR-34a-5p, miR-30a-3p, and miR-30a-5p.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Complementary and alternative medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3