STA‐HAR: A Spatiotemporal Attention‐Based Framework for Human Activity Recognition

Author:

Khaliluzzaman Md.ORCID,Furquan Md.ORCID,Zaman Khan Mohammod SazidORCID,Hoque Md. JiabulORCID

Abstract

Human activity recognition (HAR) has gained significant attention in computer vision and human‐computer interaction. This paper investigates the difficulties encountered in human activity recognition (HAR), precisely differentiating between various activities by extracting spatial and temporal features from sequential data. Traditional machine learning approaches necessitate manual feature extraction, hindering their effectiveness. For temporal features, RNNs have been widely used for HAR; however, they need help processing long sequences, leading to information bottlenecks. This work introduces a framework that effectively integrates spatial and temporal features by utilizing a series of layers that incorporate a self‐attention mechanism to overcome these problems. Here, spatial characteristics are derived using 1D convolutions coupled with pooling layers to capture essential spatial information. After that, GRUs are used to make it possible to effectively represent the temporal dynamics that are inherent in sequential data. Furthermore, the utilization of an attention mechanism serves the purpose of dynamically selecting the significant segments within the sequence, thereby improving the model’s comprehension of context and enhancing the efficacy of deep neural networks (DNNs) in the domain of human activity recognition (HAR). Three different optimizers, namely, Adam, SGD, and RMSprop, were employed to train the model. Each optimizer was tested with three distinct learning rates of 0.1, 0.001, and 0.0001. Experiments on the UCI‐HAR dataset have shown that the model works well, with an impressive 97% accuracy rate when using the Adam optimizer with a learning rate of 0.001.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3