Takeover Quality: Assessing the Effects of Time Budget and Traffic Density with the Help of a Trajectory-Planning Method

Author:

Doubek Fabian12,Loosveld Erik12,Happee Riender1,de Winter Joost1ORCID

Affiliation:

1. Department of Cognitive Robotics, Delft University of Technology, Delft, Netherlands

2. Department of UI/UX—Display and Interaction, Dr. Ing. H. C. F. Porsche AG, Stuttgart, Germany

Abstract

In highly automated driving, the driver can engage in a nondriving task but sometimes has to take over control. We argue that current takeover quality measures, such as the maximum longitudinal acceleration, are insufficient because they ignore the criticality of the scenario. This paper proposes a novel method of quantifying how well the driver executed an automation-to-manual takeover by comparing human behaviour to optimised behaviour as computed using a trajectory planner. A human-in-the-loop study was carried out in a high-fidelity 6-DOF driving simulator with 25 participants. The takeover required a lane change to avoid roadworks on the ego-lane while taking other traffic into consideration. Each participant encountered six different takeover scenarios, with a different time budget (5 s, 7 s, or 20 s) and traffic density level (low or medium). Results showed that drivers exhibited a considerably higher longitudinal and lateral acceleration than the optimised behaviour, especially in the short time budget scenarios. In scenarios of medium traffic density, the trajectory planner showed a moderate deceleration to let a vehicle in the left lane pass; many participants, on the other hand, did not decelerate before making a lane change, resulting in a dangerous emergency brake of the left-lane vehicle. In conclusion, our results illustrate the value of assessing human takeover behaviour relative to optimised behaviour. Using the trajectory planner, we showed that human drivers are unable to behave optimally in urgent scenarios and that, in some conditions, a medium deceleration, as opposed to a maximal or minimal deceleration, is optimal.

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3