Affiliation:
1. School of Arts and Humanities, China Academy of Art, ZheJiang 310002, China
Abstract
In the field of computer science, data mining is a hot topic. It is a mathematical method for identifying patterns in enormous amounts of data. Image mining is an important data mining technique involving a variety of fields. In image mining, art image organization is an interesting research field worthy of attention. The classification of art images into several predetermined sets is referred to as art image categorization. Image preprocessing, feature extraction, object identification, object categorization, object segmentation, object classification, and a variety of other approaches are all part of it. The purpose of this paper is to suggest an improved boosting algorithm that employs a specific method of traditional and simple, yet weak classifiers to create a complex, accurate, and strong classifier image as well as a realistic image. This paper investigated the characteristics of cartoon images, realistic images, painting images, and photo images, created color variance histogram features, and used them for classification. To execute classification experiments, this paper uses an image database of 10471 images, which are randomly distributed into two portions that are used as training data and test data, respectively. The training dataset contains 6971 images, while the test dataset contains 3478 images. The investigational results show that the planned algorithm has a classification accuracy of approximately 97%. The method proposed in this paper can be used as the basis of automatic large-scale image classification and has strong practicability.
Subject
Computer Science Applications,Software
Reference25 articles.
1. The role of computer technology in restructuring schools;A. Collins;Restructuring for Learning with Technology,1990
2. Relationship Between the Multimedia Technology and Education in Improving Learning Quality
3. Assessing the risk of management fraud through neural network technology;B. P. Green;Auditing,1997
4. Big data mining in the control of epidemic;J. Pei;Basic and Clinical Pharmacology and Toxicology,2020
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献