Application of Improved Boosting Algorithm for Art Image Classification

Author:

Wu Yue1ORCID

Affiliation:

1. School of Arts and Humanities, China Academy of Art, ZheJiang 310002, China

Abstract

In the field of computer science, data mining is a hot topic. It is a mathematical method for identifying patterns in enormous amounts of data. Image mining is an important data mining technique involving a variety of fields. In image mining, art image organization is an interesting research field worthy of attention. The classification of art images into several predetermined sets is referred to as art image categorization. Image preprocessing, feature extraction, object identification, object categorization, object segmentation, object classification, and a variety of other approaches are all part of it. The purpose of this paper is to suggest an improved boosting algorithm that employs a specific method of traditional and simple, yet weak classifiers to create a complex, accurate, and strong classifier image as well as a realistic image. This paper investigated the characteristics of cartoon images, realistic images, painting images, and photo images, created color variance histogram features, and used them for classification. To execute classification experiments, this paper uses an image database of 10471 images, which are randomly distributed into two portions that are used as training data and test data, respectively. The training dataset contains 6971 images, while the test dataset contains 3478 images. The investigational results show that the planned algorithm has a classification accuracy of approximately 97%. The method proposed in this paper can be used as the basis of automatic large-scale image classification and has strong practicability.

Publisher

Hindawi Limited

Subject

Computer Science Applications,Software

Reference25 articles.

1. The role of computer technology in restructuring schools;A. Collins;Restructuring for Learning with Technology,1990

2. Relationship Between the Multimedia Technology and Education in Improving Learning Quality

3. Assessing the risk of management fraud through neural network technology;B. P. Green;Auditing,1997

4. Big data mining in the control of epidemic;J. Pei;Basic and Clinical Pharmacology and Toxicology,2020

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3