Investigation on the Responses of Overburden Stress and Water Pressure to Mining under the Reverse Fault

Author:

Chu Chengcheng1ORCID

Affiliation:

1. Department of Earth and Environment, Anhui University of Science and Technology, Huainan, Anhui 232001, China

Abstract

This paper focuses on the responses of overburden stress and pore water pressure in confined aquifer to mining under the Ordovician limestone aquifer and the reverse fault. Taking 32 coal seam mining in the first eastern mining area of Qianyingzi coalmine in China as engineering background, on the basis of the mining hydrogeological and engineering geological model of the study area, a numerical calculation model considering the fluid-solid interaction is established. Simulation results indicate that the variation characteristics of pore water pressure in confined aquifer and overburden stress are affected by both mining effect and geological tectonics and are closely related to the shear failure of the reverse fault plane caused by mining effect and the failure characteristics of the overburden strata in the stope. According to the variation of pore water pressure before and after the roof water inrush, the reduction range of pore water pressure can be used as one of the early warning indicators for water inrush accidents. These new understandings are of reference value to the mining water inrush under the combined action of reverse faults and confined aquifers and to the establishment of corresponding forecasting and early warning systems.

Funder

Anhui Science and Technology Department

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

Reference25 articles.

1. UDEC simulation of the water-pouring probability in exploiting waterproof coal pillars under the conditions of thick loose bed and ultrathin overlying strata;L. W. Chen;Hydrogeology and Engineering Geology,2007

2. Impact of mining thickness on dynamic subsidence characteristics in condition of mining under thick unconsolidated layers;D. Hou;International Journal of Coal Science and Technology,2016

3. A geomechanical method for predicting the height of a water-flowing fractured zone in a layered overburden of longwall coal mining

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3