Metabolism of Albumin after Continuous Venovenous Hemofiltration in Patients with Systemic Inflammatory Response Syndrome

Author:

Chen Yu12,Ren Jianan1ORCID,Qin Xiaodong1,Li Guanwei1,Zhou Bo1,Gu Guosheng1,Hong Zhiwu1,Aa JiYe3,Li Jieshou1

Affiliation:

1. Department of Surgery, Jinling Hospital, Medical School, Nanjing University, 305 East Zhongshan Road, Nanjing, Jiangsu 210002, China

2. Minimally Invasive Department of General Surgery, Fushun Central Hospital, Fushun, Liaoning 113006, China

3. Lab of Metabolomics, Key Lab of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Jiangsu 210002, China

Abstract

Background. The systemic inflammatory response syndrome (SIRS) is characterized by a hypercatabolic state induced by inflammatory mediators. Continuous venovenous hemofiltration (CVVH) stabilizes the internal environment but also aggravates loss of amino acids. The effect of CVVH on protein dynamics is largely unknown. We adopted the stable isotopic tracer technology to investigate how CVVH changed serum albumin metabolism.Methods. Twenty SIRS patients were randomized into low- (2000 mL/h) and high- (4000 mL/h) volume CVVH groups according to the rate of replacement fluid. Eight patients with abdominal infection matched for age, sex, and laboratory index served as controls. Consecutive arterial blood samples were drawn during a primed-constant infusion of two stable isotopes to determine the albumin fractional synthesis rate (FSR) and fractional breakdown rate (FBR).Results. Before treatment, there was no significant difference of FSR and FBR among 3 groups. After CVVH, the albumin FSR in high- and low-volume groups was 7.75 ± 1.08% and 7.30 ± 0.89%, respectively, both higher than in the control (5.83 ± 0.94%). There was no significant difference in albumin FBR after treatment.Conclusions. Protein dynamic indicators could reflect protein synthesis and breakdown state directly and effectively. CVVH increased albumin synthesis, while the breakdown rate remained at a high level independently of the CVVH rate.

Funder

Foundation for Development of Science and Technology of Fushun

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3