An Improved Form of 2D SPH Method for Modeling the Excavation Damage of Tunnels Containing Random Fissures

Author:

Ren Xuhua1ORCID,Yu Shuyang12ORCID,Zhang Jixun1ORCID,Wang Haijun3ORCID,Sun Zhaohua2ORCID

Affiliation:

1. College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China

2. School of Transportation and Civil Engineering, Nantong University, 9 Seyuan Road, Nantong 226019, China

3. State Key Laboratory of Hydrology-Water Resource and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210029, China

Abstract

The excavation damage of deep tunnels is one of the most important factors contributing to the failure of tunnel structures. In order to investigate the influence of tunnel shapes and fissure geometries, the kernel function in the traditional SPH method has been improved, which can realize the brittle fracture characteristics of particles and can be called the Improved Kernel of Smoothed Particle Hydrodynamics (IKSPH-2D). Meanwhile, the random fissure generation method in IKSPH has been put forward. Different tunnel shapes, fissure geometries, and locations are considered during the simulation of tunnel excavation, and results show that (1) the typical “V”-shaped shear damage zones appear after the tunnel excavation, which is consistent with engineering practice. Meanwhile, tunnel excavation also has an “activating” effect on the preexisting fissures. (2) The stability of circular-shaped tunnel is the best, while horseshoe shaped tunnel is worse, and the “U”-shaped tunnel is the worst. (3) Fissures with small and large dip angles have the greatest influence on the stability of tunnel excavation. With the increase of fissure numbers and lengths, the tunnel tends to be instable. (4) The IKSPH method gets free from traditional grids in FEM, which can dynamically reflect the fracture processes of tunnel excavation. Meanwhile, developing 3D IKSPH parallel program will be the future directions.

Funder

Fundamental Research Funds for the Central Universities

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3