Leukocyte Segmentation Method Based on Adaptive Retinex Correction and U-Net

Author:

Chen Wei1ORCID,Zhu Mengjing1ORCID

Affiliation:

1. School of Communication and Information Engineering, Xi’an University of Science and Technology, Shaanxi 710054, China

Abstract

To address the issues of uneven illumination and inconspicuous leukocyte properties in the gathered cell pictures, a leukocyte segmentation method based on adaptive retinex correction and U-net was proposed. The procedure begins by processing a peripheral blood image to clearly distinguish leukocytes from other components in the image. The adaptive retinex correction, which is based on multiscale retinex with colour replication (MSRCR), redefines the colour recovery function by introducing Michelson contrast. Then, the image is trained with the U-net convolutional neural network, and the leukocyte segmentation is completed. The innovation is in the manner of processing peripheral blood images, which improves the accuracy of leukocyte segmentation. This study conducts experimental evaluations on the Cellavision, BCCD, and LISC datasets. The experimental results show that the method in this study is better than the current best method, and the segmentation accuracy rate reaches 98.87%.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine

Reference22 articles.

1. Leukocyte segmentation in peripheral blood images using a novel edge strength cue-based location detection method

2. Improved leukocyte detection algorithm of YOLOV5;J. Wang;Computer Engineering and Applications,2022

3. WBC-Net: A white blood cell segmentation network based on UNet++ and ResNet

4. Application of color space transformation and watershed algorithm based on distance transform in white blood cell image segmentation;X. Zhao;China Medical Devices,2019

5. Study on recognition method of label-free red and white cell using low-rate microscopic image;W. Wang;Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition),2019

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3