Identification of Alzheimer’s Disease Progression Stages Using Topological Measures of Resting-State Functional Connectivity Networks: A Comparative Study

Author:

Wu Zhanxiong1ORCID,Wu Jinhui1,Chen Xumin1,Li Xun2,Shen Jian3,Hong Hui1ORCID

Affiliation:

1. School of Electronic Information, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018, China

2. School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018, China

3. Neurosurgery Department, The First Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China

Abstract

Resting-state functional magnetic resonance imaging (rs-fMRI) has been widely employed to examine brain functional connectivity (FC) alterations in various neurological disorders. At present, various computational methods have been proposed to estimate connectivity strength between different brain regions, as the edge weight of FC networks. However, little is known about which model is more sensitive to Alzheimer’s disease (AD) progression. This study comparatively characterized topological properties of rs-FC networks constructed with Pearson correlation (PC), dynamic time warping (DTW), and group information guided independent component analysis (GIG-ICA), aimed at investigating the sensitivity and effectivity of these methods in differentiating AD stages. A total of 54 subjects from Alzheimer’s Disease Neuroimaging Initiative (ANDI) database, divided into healthy control (HC), mild cognition impairment (MCI), and AD groups, were included in this study. Network-level (global efficiency and characteristic path length) and nodal (clustering coefficient) metrics were used to capture groupwise difference across HC, MCI, and AD groups. The results showed that almost no significant differences were found according to global efficiency and characteristic path length. However, in terms of clustering coefficient, 52 brain parcels sensitive to AD progression were identified in rs-FC networks built with GIG-ICA, much more than PC (6 parcels) and DTW (3 parcels). This indicates that GIG-ICA is more sensitive to AD progression than PC and DTW. The findings also confirmed that the AD-linked FC alterations mostly appeared in temporal, cingulate, and angular areas, which might contribute to clinical diagnosis of AD. Overall, this study provides insights into the topological properties of rs-FC networks over AD progression, suggesting that FC strength estimation of FC networks cannot be neglected in AD-related graph analysis.

Funder

Northern California Institute for Research and Education

Publisher

Hindawi Limited

Subject

Neurology (clinical),Neurology,General Medicine,Neuropsychology and Physiological Psychology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3