Affiliation:
1. Beijing University of Posts and Telecommunications, Beijing 100876, China
2. China Academy of Information and Communications Technology, Beijing 100191, China
Abstract
Network slicing makes it possible for future applications with a variety of adaptability requirements and performance requirements by spliting the physical network into several logical networks. Radio access network (RAN) slicing’s main goal is to assign physical resource blocks (RBs) to mMTC, eMBB, and uRLLC services while ensuring the Quality of service (QoS). Consequently, it is challenging to determine the optimal strategies for 5G radio access network (5G-RAN) slicing because of dynamically changes in slice needs and environmental data, and conventional approaches have difficulty addressing resource allocation issues. In this paper, we present an energy-efficient deep deterministic policy gradient resource allocation (EE-DDPG-RA) method for RAN slicing in 5G networks to choose the resource allocation policy that increases long-term throughput while satisfying the requirements of B5G systems for quality of service. This method’s main goal is to remove unnecessary actions in order to lower the amount of available action space. The numerical outcomes demonstrate that the proposed approach outperforms boundaries by enhancing deep-rooted throughput and effectively managing resources.
Funder
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献