Strong Emergence Arising from Weak Emergence

Author:

Schmickl Thomas1ORCID

Affiliation:

1. Artificial Life Lab, Department of Zoology, Institute of Biology, University of Graz, Graz, Austria

Abstract

Predictions of emergent phenomena, appearing on the macroscopic layer of a complex system, can fail if they are made by a microscopic model. This study demonstrates and analyses this claim on a well-known complex system, Conway’s Game of Life. Straightforward macroscopic mean-field models are easily capable of predicting such emergent properties after they have been fitted to simulation data in an after-the-fact way. Thus, these predictions are macro-to-macro only. However, a micro-to-macro model significantly fails to predict correctly, as does the obvious mesoscopic modeling approach. This suggests that some macroscopic system properties in a complex dynamic system should be interpreted as examples of phenomena (properties) arising from “strong emergence,” due to the lack of ability to build a consistent micro-to-macro model, that could explain these phenomena in a before-the-fact way. The root cause for this inability to predict this in a micro-to-macro way is identified as the pattern formation process, a phenomenon that is usually classified as being of “weak emergence.” Ultimately, this suggests that it may be in principle impossible to discriminate between such distinct categories of “weak” and “strong” emergence, as phenomena of both types can be part of the very same feedback loop that mainly governs the system’s dynamics.

Funder

University of Graz

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3