Finite-Element Simulation of Electroosmotic Mixing: A Study of the Simultaneous Effects of Working Parameters for Optimization

Author:

Kalantar Feeoj Reza1ORCID,Alavi Eshkaftaki Sayed Masoud1ORCID,Kazemi Asfeh Iman1ORCID,Jahangiri Mehdi2ORCID

Affiliation:

1. Department of Mechanical Engineering, Shahrekord University, Shahrekord, Iran

2. Energy Research Center, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran

Abstract

Micromixers are crucial parts of microfluidic systems when it comes to efficiency and precision, as mixing is the central process in most relevant applications, including medical diagnosis, chemical production, and drug discovery. In view of the importance of improving the mixing quality, for the first time, the present work investigates the simultaneous effects of mixing chamber geometry (circular, hexagonal, and octagonal), electric field frequency (5, 7, 10, and 15 Hz), inlet velocity (0.1-0.2 mm·s−1), and phase difference (0-π) on the flow inside an electroosmotic micromixer using the finite-element tool COMSOL Multiphysics 5.4 to optimize the process and achieve homogeneous mixing. The flow-field, concentration-field, and electric-field equations were coupled and solved simultaneously. The results of this research indicated that at a given inlet velocity and a specific frequency range, as frequency increases, more mixing occurs in a smaller chamber, and as the inlet velocity increases, more mixing occurs in a smaller chamber at a higher frequency. Moreover, the highest mixing level (98.16%) was obtained with a 0.1 mm·s−1 inlet velocity, 10 Hz frequency, and π/2 phase difference in a hexagonal chamber.

Publisher

Hindawi Limited

Subject

General Chemical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Numerical investigation of electroosmotic mixing in a contraction–expansion microchannel;Chemical Engineering and Processing - Process Intensification;2023-10

2. Analytical and Numerical Investigations of Electrokinetic Micromixing in Electroosmotic Micromixers;Industrial & Engineering Chemistry Research;2023-05-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3