Lattice-Based Self-Enhancement Authorized Accessible Privacy Authentication for Cyber-Physical Systems

Author:

Liu Jinhui12ORCID,Yu Yong3ORCID,Wang Houzhen4,Zhang Huanguo4

Affiliation:

1. School of Cyber Security, Northwestern Polytechnical University, Xi’an 710072, China

2. Research & Development Institute of Northwestern Polytechnical University, Shenzhen 518057, China

3. School of Cyber Security, Xi’an University of Posts and Telecommunications, Xi’an 710072, China

4. School of Cyber Science and Engineering, Wuhan University, Wuhan 430072, China

Abstract

Healthcare cyber-physical system significantly facilitates healthcare services and patient treatment effectiveness by analyzing patients’ health information data conveniently. Nevertheless, it also develops the threats to the confidentiality of health information, patients’ privacy, and decidability of medical disputes. And, with the advances of quantum computing technology, most existing anonymous authentication schemes are becoming a growing threat to traditional cryptosystems. To address these problems, for healthcare cyber-physical systems, we propose a new lattice-based self-enhancement authorized accessible privacy authentication scheme by using a strong designated verifier double-authentication-preventing signature technique, called SEAPA. The SEAPA achieves three security and privacy requirements including unforgeability, anonymity for patients’ information, and self-enhancement for patients themselves. A detailed security proof shows our proposal achieves those required security goals. Finally, our construction is demonstrated by parameter analysis and performance evaluation to have reasonable efficiency.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Information Systems

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3