Early Warning of Infectious Diseases in Hospitals Based on Multi-Self-Regression Deep Neural Network

Author:

Wang Mengying1,Lee Cuixia2,Wang Wei3,Yang Yingyun1,Yang Cheng1ORCID

Affiliation:

1. State Key Laboratory of Media Convergence and Communication, Communication University of China, Beijing, China

2. Peking University Third Hospital, Beijing, China

3. Goodwill Hessian Health Technology Co, Ltd., Beijing, China

Abstract

Objective. Infectious diseases usually spread rapidly. This study aims to develop a model that can provide fine-grained early warnings of infectious diseases using real hospital data combined with disease transmission characteristics, weather, and other multi-source data. Methods. Based on daily data reported for infectious diseases collected from several large general hospitals in China between 2012 and 2020, seven common infectious diseases in medical institutions were screened and a multi self-regression deep (MSRD) neural network was constructed. Using a recurrent neural network as the basic structure, the model can effectively model the epidemiological trend of infectious diseases by considering the current influencing conditions while taking into account the historical development characteristics in time-series data. The fitting and prediction accuracy of the model were evaluated using mean absolute error (MAE) and root mean squared error. Results. The proposed approach is significantly better than the existing infectious disease dynamics model, susceptible-exposed-infected-removed (SEIR), as it addresses the concerns of difficult-to-obtain quantitative data such as latent population, overfitting of long time series, and considering only a single series of the number of sick people without considering the epidemiological characteristics of infectious diseases. We also compare certain machine learning methods in this study. Experimental results demonstrate that the proposed approach achieves an MAE of 0.6928 and 1.3782 for hand, foot, and mouth disease and influenza, respectively. Conclusion. The MRSD-based infectious disease prediction model proposed in this paper can provide daily and instantaneous updates and accurate predictions for epidemic trends.

Funder

CFH

Publisher

Hindawi Limited

Subject

Health Informatics,Biomedical Engineering,Surgery,Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3