Meteorological Drought Monitoring Based on Satellite CHIRPS Product over Gamo Zone, Southern Ethiopia

Author:

Shalishe Amba1ORCID,Bhowmick Anirudh1ORCID,Elias Kumneger1ORCID

Affiliation:

1. Arba Minch University, Faculty of Meteorology and Hydrology, Arba Minch, Ethiopia

Abstract

Drought is a frequent occurrence in semidesert areas of southern Ethiopia that significantly affect regional, social, economic, and environmental conditions. Lack of rainfall monitoring network, instrument measurement, and failure are major bottlenecks for agro-and hydroclimate research in developing countries. The objectives of this study were to evaluate the performance of CHIRPS rainfall product and to assess meteorological drought using SPI for the period 2000 to 2020 over Gamo Zone, southern Ethiopia. The performance of CHIRPS v2 was assessed and compared to station observations (2000–2020) in the study domain to derive SPI on a three-month timescale. The Pearson correlation coefficient (R), bias, probability of bias (PBias), mean error (ME), mean absolute error (MAE), root mean square error (RMSE), and Nash simulation efficiency (NSE) values across the zone for CHIRPS v2 were found to be 0.88, 1.02, 2.56, 0.25, 22.41, 33.14, and 0.77, respectively. The results indicate that CHIRPS performed good ability to analyze the drought characteristics in the Gamo Zone. The spatial and temporal distribution method of meteorological drought has been evaluated using the Climate Data Tool (CDT). The Standardized Precipitation Index (SPI) was computed using the gamma distribution method. The magnitude of (SPI-3) of monthly and seasonal (MAM) meteorological drought in the zone from 2000 to 2020. The result shows that the known historic drought years (2014, 2015, 2010, 2009, and 2008) were indicated very well. Furthermore, sever and extreme droughts were observed in 2008 and 2009 with drought duration of 6.7 and 6.3, respectively, in most areas of the zone. Hence, this study revealed that CHIRPS can be a useful supplement for measuring rainfall data to estimate rainfall and drought monitoring in this region.

Funder

Arba Minch University

Publisher

Hindawi Limited

Subject

Atmospheric Science,Pollution,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3