Rosin Derivative IDOAMP Inhibits Prostate Cancer Growth via Activating RIPK1/RIPK3/MLKL Signaling Pathway

Author:

Xu Hong1,Zeng Xingkai2,Wei Xuecheng1,Xue Zhongfeng2,Chen Naiwen1,Zhu Wei1,Xie Wenhua1,He Yi1ORCID

Affiliation:

1. Department of Urology, The Affiliated Hospital of Jiaxing University, Jiaxing, China

2. College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China

Abstract

Rosin derivatives such as dehydroabietic acid and dehydroabietic amine belonging to diterpenoids have similar structure with androgen that inhibited the occurrence and development of prostate cancer. In this study, the effects and possible mechanism of the rosin derivative IDOAMP on prostate cancer were investigated. Our results showed that IDOAMP effectively inhibited cell viabilities of LNCaP, PC3, and DU145 prostate cells. After the treatment with IDOAMP, the levels of cleaved-PARP, LC3BII/I, and HMGB1 were increased, whereas the expression of GPX4 was decreased. Interestingly, cell viability was reversed by the supplements of necrostatin-1 and necrosulfonamide. Meanwhile, the IDOAMP downregulated the expression of human Aurora kinase A that was overexpressed in prostate cancer. In addition, co-IP results showed that IDOAMP inhibited the binding of Aurora kinase A to the receptor-interacting serine/threonine kinase 1 (RIPK1) and RIPK3. However, the binding of RIPK1 to FADD, RIPK3, or MLKL was significantly promoted. Further studies showed that the phosphorylation levels of RIPK1, RIPK, and MLKL were increased in a concentration-dependent manner. In in vivo model, IDOAMP reduced the tumor volumes and weights. In conclusion, IDOAMP directly inhibited Aurora kinase A and promoted the RIPK1/RIPK3/MLKL necrosome activation to inhibit the prostate cancer.

Funder

Guangxi University of Chinese Medicine

Publisher

Hindawi Limited

Subject

Cell Biology,Aging,General Medicine,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3