Electroacupuncture-Regulated miR-34a-3p/PDCD6 Axis Promotes Post-Spinal Cord Injury Recovery in Both In Vitro and In Vivo Settings

Author:

Ma Lili1ORCID,Ma Lizhong2ORCID,Yang Yu3ORCID,Chen Ting4ORCID,Wang Limin56ORCID,Deng Qilong26ORCID

Affiliation:

1. Department of Infectious Medicine, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, 317000 Zhejiang Province, China

2. Rehabilitation Medical Center, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, 317000 Zhejiang Province, China

3. Department of Orthopedic Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, 317000 Zhejiang Province, China

4. Department of Dermatology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, 317000 Zhejiang Province, China

5. Department of Internal Neurology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, 317000 Zhejiang Province, China

6. Luqiao Hospital, Taizhou Enze Medical Center (Group), Taizhou, 318000 Zhejiang Province, China

Abstract

Electroacupuncture (EA) could enhance neuroregeneration and posttraumatic conditions; however, the underlying regulatory mechanisms remain ambiguous. PDCD6 (programmed cell death 6) is an established proapoptotic regulator which is responsible for motoneuronal death. However, its potential regulatory role in post-spinal cord injury (SCI) regeneration has remained largely unknown. Further investigations are warranted to clarify the involvement of PDCD6 post-SCI recovery and the underlying mechanisms. In our study, based on bioinformatics prediction, we found that miR-34a-3p might be an upstream regulator miRNA for PDCD6, which was subsequently validated through combined utilization of the qRT-PCR, western blot, and dual-luciferase reporter system. Our in vitro results showed that miR-34a-3p might promote the in vitro differentiation of neural stem cell (NSC) through suppressing PDCD6 and regulating other important neural markers such as fibroblast growth factor receptor 1 (FGFR1), MAP1/2 (MAP kinase kinases 1/2), myelin basic protein (MBP), βIII-tubulin Class III β-tubulin (βIII tubulin), and glial fibrillary acidic protein (GFAP). Notably, in the post-SCI rat model, exogenous miR-34a-3p agomir obviously inhibited the expression of PDCD6 at the protein level and promoted neuronal proliferation, motoneurons regeneration, and axonal myelination. The restorations at cellular level might contribute to the improved hindlimbs functions of post-SCI rats, which was manifested by the Basso-Beattie-Bresnahan (BBB) locomotor test. The impact of miR-34a-3p was further promoted by EA treatment in vivo. Conclusively, this paper argues that a miR-34a-3p/PDCD6 axis might be a candidate therapeutic target for treating SCI and that the therapeutic effect of EA is driven through this pathway.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Immunology,General Medicine,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3