The Fractional Series Solutions for the Conformable Time-Fractional Swift-Hohenberg Equation through the Conformable Shehu Daftardar-Jafari Approach with Comparative Analysis

Author:

Liaqat Muhammad Imran1ORCID,Okyere Eric2ORCID

Affiliation:

1. National College of Business Administration & Economics, Lahore, Pakistan

2. Department of Mathematics and Statistics, University of Energy and Natural Resources, Sunyani, Ghana

Abstract

The major objective of this study is to derive fractional series solutions of the time-fractional Swift-Hohenberg equations (TFSHEs) in the sense of conformable derivative using the conformable Shehu transform (CST) and the Daftardar-Jafari approach (DJA). We call it the conformable Shehu Daftardar-Jafari approach (CSDJA). One of the universal equations used in the description of pattern formation in spatially extended dissipative systems is the Swift-Hohenberg equation. To assess the effectiveness and consistency of the suggested approach, the numerical results are compared with those obtained by the Elzaki decomposition method (EDM) in the sense of relative and absolute error functions, proving that the CSDJA is an effective substitute for techniques that use He’s or Adomian polynomials to solve TFSHEs. The transition from the imprecise solution to the precise solution at various values of fractional-order derivatives is shown using the recurrence error function. Furthermore, the exact and approximative solutions are compared using 2D and 3D graphics and also numerically in the form of relative and absolute error functions. The results show that the procedure is quick, precise, and easy to implement, and it yields outstanding results. The recommended approach’s strength, which gives it an advantage over the Adomian decomposition and homotopy perturbation methods, is its algorithm for dealing with nonlinear problems without the use of Adomian polynomials or He’s polynomials. The advantage of this method is that it does not make any assumptions about physical parameters. As a result, it can be used to solve both weakly and strongly nonlinear problems and circumvent some of the drawbacks of perturbation techniques.

Publisher

Hindawi Limited

Subject

General Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3