Effective CBMIR System Using Hybrid Features-Based Independent Condensed Nearest Neighbor Model

Author:

Praveena Hirald Dwaraka1,Guptha Nirmala S.2,Kazemzadeh Afsaneh3,Parameshachari B. D.4ORCID,Hemalatha K. L.5

Affiliation:

1. Department of Electronics and Communication Engineering, Sree Vidyanikethan Engineering College, Tirupati 517102, Andhra Pradesh, India

2. Department of CSE-Artificial Intelligence, Sri Venkateshwara College of Engineering, Bengaluru 562157, India

3. Shabakeh Pardaz Azarbaijan, Tabriz, Iran

4. Department of Telecommunication Engineering, GSSS Institute of Engineering and Technology for Women, Mysuru 570016, India

5. Department of ISE, Sri Krishna Institute of Technology, Bengaluru 560090, India

Abstract

In recent times, a large number of medical images are generated, due to the evolution of digital imaging modalities and computer vision application. Due to variation in the shape and size of the images, the retrieval task becomes more tedious in the large medical databases. So, it is essential in designing an effective automated system for medical image retrieval. In this research study, the input medical images are acquired from new Pap smear dataset, and then, the visible quality of acquired medical images is improved by applying image normalization technique. Furthermore, the hybrid feature extraction is accomplished using histogram of oriented gradients and modified local binary pattern to extract the color and texture feature vectors that significantly reduces the semantic gap between the feature vectors. The obtained feature vectors are fed to the independent condensed nearest neighbor classifier to classify the seven classes of cell images. Finally, relevant medical images are retrieved using chi square distance measure. Simulation results confirmed that the proposed model obtained effective performance in image retrieval in light of specificity, recall, precision, accuracy, and f-score. The proposed model almost achieved 98.88% of retrieval accuracy, which is better compared to other deep learning models such as long short-term memory network, deep neural network, and convolutional neural network.

Publisher

Hindawi Limited

Subject

Health Informatics,Biomedical Engineering,Surgery,Biotechnology

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3