Investigation for Synchronization of a Rotor-Pendulum System considering the Multi-DOF Vibration

Author:

Hou Yongjun1,Fang Pan1

Affiliation:

1. School of Mechanical Engineering, Southwest Petroleum University, Chengdu 610500, China

Abstract

This work is a continuation for our published literature for vibration synchronization. A new mechanism, two rotors coupled with a pendulum rod in a multi-DOF vibration system, is proposed to implement coupling synchronization, and the dynamics equation of mechanism is derived by Lagrange equation. In addition, the coupling relationship between the vibrobody and the pendulum rod is ascertained with the Laplace transformation method, based on the dimensionless equation of the dynamics system. The Poincare method is employed to study the synchronization state between the two unbalanced rotors, which is converted into that of existence and the stability of solutions for synchronization-balance equations. The obtained results are supported by computer simulations. It is demonstrated that the values of the spring stiffness coefficient, the length of the pendulum, and the angular installation of the pendulum are important parameters with respect to the synchronous behavior in the rotor-pendulum system.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dynamic theory and experimental testing in ipsilateral offset dual-motor excitation system;Transactions of the Canadian Society for Mechanical Engineering;2024-06-01

2. Coupled pendula with varied forcing direction;Chaos: An Interdisciplinary Journal of Nonlinear Science;2023-06-01

3. Theoretical and experimental study for implementation of the elliptical trajectory in dual-motor vibration system;Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics;2023-05-15

4. Synchronous characteristic of three homodromy motors in vibrating isolation system;Journal of Mechanical Science and Technology;2021-01

5. Theoretical Study of Synchronous Behavior in a Dual-Pendulum-Rotor System;Shock and Vibration;2018-07-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3