Plectranthus barbatus Leaf Extract-Mediated Synthesis of ZnS and Mg-Doped ZnS NPs: Structural, Optical, Morphological, and Antibacterial Studies

Author:

Al-Hammadi A. H.1ORCID,Alnehia Adnan1ORCID,Al-Sharabi Annas2ORCID,Al-Odayni Abdel-Basit3ORCID,Abdu Naaser A. Y.4ORCID,Saeed Waseem Sharaf3ORCID

Affiliation:

1. Department of Physics, Faculty of Sciences, Sana’a University, Sana’a 12081, Yemen

2. Department of Physics, Faculty of Applied Sciences, Thamar University, Dhamar 87246, Yemen

3. Engineer Abdullah Bugshan Research Chair for Dental and Oral Rehabilitation, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia

4. Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia

Abstract

In the current study, the researchers have explored the influence of doped Mg ions on the optical, morphological, and structural properties of zinc sulfide (ZnS) nanoparticles (NPs). The green technique was employed to prepare pure and 2% and 5% Mg-doped ZnS NPs using the Plectranthus barbatus leaf extract as a capping agent. XRD, SEM, FTIR, and UV-visible were used in the investigation process. The XRD results showed that all the synthesized materials have a cubic structure with space group F-43m. The Dav was nearly in the range of 2.02–2.20 nm. The SEM images illustrated that NPs were agglomerated. The UV-visible results showed that the optical bandgap increased as Mg2+ ions increased, which was in the range of 3.81–4.42 eV. The absorption shoulder of the prepared NPs is blue-shifted with increasing dopant concentration. The FTIR spectrum gives characteristic peaks for Zn-S bonds and asserts NPs’ formation. The antibacterial check against E. coli and S. aureus bacterial strains revealed that pure and Mg-doped ZnS NPs have higher activity for both bacterial strains. The results have shown that the prepared materials can be used for antibacterial activities and optoelectronic applications.

Funder

Ministry of Education – Kingdom of Saudi Arabia

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Ceramics and Composites,Electronic, Optical and Magnetic Materials,Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3