RESH: A Secure Authentication Algorithm Based on Regeneration Encoding Self-Healing Technology in WSN

Author:

Liang Wei1,Ruan Zhiqiang23ORCID,Wang Yuntao4,Chen Xiaoyan1

Affiliation:

1. Department of Software Engineering, Xiamen University of Technology, Xiamen, Fujian 361024, China

2. Department of Computer Science, Minjiang University, Fuzhou 350108, China

3. Fujian Provincial Key Laboratory of Information Processing and Intelligent Control, Fuzhou 350116, China

4. Institute of Information Engineering Chinese Academy of Sciences, Beijing 100093, China

Abstract

In the real application environment of wireless sensor networks (WSNs), the uncertain factor of data storage makes the authentication information be easily forged and destroyed by illegal attackers. As a result, it is hard for secure managers to conduct forensics on transmitted information in WSN. This work considers the regeneration encoding self-healing and secret sharing techniques and proposes an effective scheme to authenticate data in WSN. The data is encoded by regeneration codes and then distributed to other redundant nodes in the form of fragments. When the network is attacked, the scheme has the ability against tampering attack or collusion attack. Furthermore, the damaged fragments can be restored as well. Parts of fragments, encoded by regeneration code, are required for secure authentication of the original distributed data. Experimental results show that the proposed scheme reduces hardware communication overhead by five percent in comparison. Additionally, the performance of local recovery achieves ninety percent.

Funder

Natural Science Foundation of Fujian Province

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3