A Novel Fluorescent Dye Invades Mitochondria to Selectively Kill Cancer Stem Cells via Increased ROS Production

Author:

Zhang Bei-Bei1,Liu Jun-gang2,Bai Xian-Yu3,Huang Yuan-Jiao45ORCID,Xu Ning6ORCID,Ren Tao6ORCID

Affiliation:

1. Institute of Biomedical Research, Yunnan University, Kunming, China

2. Guangxi Medical University Affiliated Cancer Hospital, Nanning, China

3. Graduate School, Guangxi Medical University, Nanning, China

4. Life Science Institute, Guangxi Medical University, Nanning, China

5. School of Basic Medical Sciences, Guangxi Medical University, Nanning, China

6. The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China

Abstract

Development of multiple agents has a significant impact on the cancer diagnosis and therapy. Several fluorescent dyes including near-infrared (NIR) fluorescent agents have been already well studied in the field of photodynamic therapy (PDT). In the present study, we reported a novel fluorescent dye could obviously inhibit cancer cell proliferation with slight toxic effects on the biological organism. Furthermore, it displayed selective staining on cancer cells, particularly on cancer stem cells (CSCs), rather than normal cells. Mechanically, this dye preferred to invading mitochondria of cancer cells and inducing overwhelming reactive oxygen species (ROS) production. The in vivo experiments further demonstrated that this dye could image cancer cells and even CSCs in a short-time intratumor injection manner using a zebrafish model and subsequently inhibit cancer cell proliferation after a relatively long-time drug exposure. Taken together, the future development of this agent will promise to make an essential contribution to the cancer diagnosis and therapeutics.

Funder

Science and Technology Department of Guangxi Zhuang Autonomous

Publisher

Hindawi Limited

Subject

Inorganic Chemistry,Organic Chemistry,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3