Image Target Detection and Recognition Method Using Deep Learning

Author:

Sun Hongyan1ORCID

Affiliation:

1. Information & Educational Technology Center, Southwest Medical University, Luzhou 646000, China

Abstract

Image target detection and recognition had been widely used in many fields. However, the existing methods had poor robustness; they not only had high error rate of target recognition but also had high dependence on parameters, so they were limited in application. Therefore, this paper proposed an image target detection and recognition method based on the improved R-CNN model, so as to detect and recognize the dynamic image target in real time. Based on the analysis of the existing theories of deep learning detection and recognition, this paper summarized the composition and working principle of the traditional image target detection and recognition system and compared the basic models of target detection and recognition, such as R-CNN network, Fast-RCNN network, and Faster-RCNN network. In order to improve the accuracy and real-time performance of the model in image target detection and recognition, this paper adopted the target feature matching module in the existing R-CNN network model, so as to obtain the feature map close to the same target through similarity calculation for the features extracted by the model. Therefore, an image target detection and recognition algorithm based on the improved R-CNN network model is proposed. Finally, the experimental results showed that the image target detection and recognition algorithm proposed in this paper can be better applied to image target detection and classification in complex environment and had higher detection efficiency and recognition accuracy than the existing models. The target detection and recognition algorithm proposed in this paper had certain reference value and guiding significance for further application research in related fields.

Funder

Project of Sichuan Health Information Society

Publisher

Hindawi Limited

Subject

General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3