A Collaborative Brain-Computer Interface Framework for Enhancing Group Detection Performance of Dynamic Visual Targets

Author:

Song Xiyu1ORCID,Zeng Ying12ORCID,Tong Li1ORCID,Shu Jun1ORCID,Yang Qiang3ORCID,Kou Jian4ORCID,Sun Minghua5ORCID,Yan Bin1ORCID

Affiliation:

1. Henan Key Laboratory of Imaging and Intelligent Processing, PLA Strategic Support Force Information Engineering University, Zhengzhou, China

2. The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuro Information, University of Electronic Science and Technology of China, Chengdu, China

3. Xi’an Satellite Control Center, Hangzhou, China

4. PLA 32317 Force, Wulumuqi, China

5. Department of Radiology, Henan Provincial People’s Hospital, Department of Radiology, Central China Fuwai Hospital, Zhengzhou University, Zhengzhou, China

Abstract

The superiority of collaborative brain-computer interface (cBCI) in performance enhancement makes it an effective way to break through the performance bottleneck of the BCI-based dynamic visual target detection. However, the existing cBCIs focus on multi-mind information fusion with a static and unidirectional mode, lacking the information interaction and learning guidance among multiple agents. Here, we propose a novel cBCI framework to enhance the group detection performance of dynamic visual targets. Specifically, a mutual learning domain adaptation network (MLDANet) with information interaction, dynamic learning, and individual transferring abilities is developed as the core of the cBCI framework. MLDANet takes P3-sSDA network as individual network unit, introduces mutual learning strategy, and establishes a dynamic interactive learning mechanism between individual networks and collaborative decision-making at the neural decision level. The results indicate that the proposed MLDANet-cBCI framework can achieve the best group detection performance, and the mutual learning strategy can improve the detection ability of individual networks. In MLDANet-cBCI, the F1 scores of collaborative detection and individual network are 0.12 and 0.19 higher than those in the multi-classifier cBCI, respectively, when three minds collaborate. Thus, the proposed framework breaks through the traditional multi-mind collaborative mode and exhibits a superior group detection performance of dynamic visual targets, which is also of great significance for the practical application of multi-mind collaboration.

Funder

National Key Research and Development Plan of China

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3