Research on Stock Price Time Series Prediction Based on Deep Learning and Autoregressive Integrated Moving Average

Author:

Xiao Daiyou1ORCID,Su Jinxia2

Affiliation:

1. School of Finance, Central University of Finance and Economics, Beijing, China

2. School of Business, Central University of Finance and Economics, Beijing, China

Abstract

Different from traditional algorithms and model, machine learning is a systematic and comprehensive application of computer algorithms and statistical models, and it has been widely used in many fields. In the field of finance, machine learning is mainly used to study the future trend of capital market price. In this paper, to predict the time-series data of stock, we applied the traditional models and machine learning models for forecasting the linear and non-linear problem, respectively. First, stock samples that occurred from year 2010 to 2019 at the New York Stock Exchange are collected. Next, the ARIMA (autoregressive integrated moving average model) model and LSTM (long short-term memory) neural network model are applied to train and predict stock price and stock price subcorrelation. Finally, we evaluate the proposed model by several indicators, and the experiment results show that: (1) Stock price and stock price correlation are accurately predicted by the ARIMA model and LSTM model; (2) compared with ARIMA, the LSTM model performance better in prediction; and (3) the ensemble model of ARIMA-LSTM significantly outperforms other benchmark methods. Therefore, our proposed method provides theoretical support and method reference for investors about stock trading in China stock market.

Publisher

Hindawi Limited

Subject

Computer Science Applications,Software

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enhancing EV lithium-ion battery management: automated machine learning for early remaining useful life prediction with innovative multi-health indicators;The Journal of Supercomputing;2024-06-04

2. An automated quantitative investment model of stock selection and market timing based on industry information;Egyptian Informatics Journal;2024-06

3. Predicting Stock Market Movements with Linear Regression and LSTM Machine Learning Model;2024 IEEE International Conference on Contemporary Computing and Communications (InC4);2024-03-15

4. Visualization and forecasting of stock’s closing price using machine learning;Multimedia Tools and Applications;2024-02-10

5. Autoregressive Integrated Moving Average Model for Time Series Analysis;2024 International Conference on Optimization Computing and Wireless Communication (ICOCWC);2024-01-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3