Affiliation:
1. School of Finance, Central University of Finance and Economics, Beijing, China
2. School of Business, Central University of Finance and Economics, Beijing, China
Abstract
Different from traditional algorithms and model, machine learning is a systematic and comprehensive application of computer algorithms and statistical models, and it has been widely used in many fields. In the field of finance, machine learning is mainly used to study the future trend of capital market price. In this paper, to predict the time-series data of stock, we applied the traditional models and machine learning models for forecasting the linear and non-linear problem, respectively. First, stock samples that occurred from year 2010 to 2019 at the New York Stock Exchange are collected. Next, the ARIMA (autoregressive integrated moving average model) model and LSTM (long short-term memory) neural network model are applied to train and predict stock price and stock price subcorrelation. Finally, we evaluate the proposed model by several indicators, and the experiment results show that: (1) Stock price and stock price correlation are accurately predicted by the ARIMA model and LSTM model; (2) compared with ARIMA, the LSTM model performance better in prediction; and (3) the ensemble model of ARIMA-LSTM significantly outperforms other benchmark methods. Therefore, our proposed method provides theoretical support and method reference for investors about stock trading in China stock market.
Subject
Computer Science Applications,Software
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献