Social Stability Risk Diffusion of Large Complex Engineering Projects Based on an Improved SIR Model: A Simulation Research on Complex Networks

Author:

He Zhengqi12ORCID,Huang Dechun12ORCID,Fang Junmin1ORCID

Affiliation:

1. Business School, Hohai University, Nanjing 211100, China

2. Jiangsu Provincial Collaborative Innovation Center of World Water Valley and Water Ecological Civilization, Nanjing 211100, China

Abstract

The development of China’s new urbanization has driven the rapid increase in large complex engineering projects, which have the characteristics of large-scale investment, long-term construction, and wide social influence, easily causing benefit conflicts among relevant stakeholders, and breaking out social stability risks. In the previous research, the risks of large complex engineering projects mainly concentrated on the assessment of economic risk, schedule risk, etc. However, there were few studies on social risks, and they did not consider how the risks spread on the complex networks based on the social connections such as interpersonal relationship. From the subject of social stability risk diffusion of large complex engineering projects, this paper constructs a related risk diffusion model based on the SIR model to analyze risk diffusion mechanism. Through NetLogo simulation platform, the model is placed under a small-world network environment that is closest to the topology structure of real social interpersonal relationship network for simulation research, aiming to find out key factors of social stability risk intervention for large complex engineering projects, which greatly contributes to the social stability risk management of large complex engineering projects.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3