Detailed Simulation of Complex Hydraulic Problems with Macroscopic and Mesoscopic Mathematical Methods

Author:

Biscarini Chiara1,Di Francesco Silvia2ORCID,Nardi Fernando1ORCID,Manciola Piergiorgio3

Affiliation:

1. Warredoc, University for Foreigners of Perugia, Via XIV Settembre, 06100 Perugia, Italy

2. CIPLA, Interuniversitary Centre for Environment, University of Perugia, Piazza Università 1, 06125 Perugia, Italy

3. DICA, Department of Civil and Environmental Engineering, University of Perugia, Via G. Duranti 93, 06125 Perugia, Italy

Abstract

The numerical simulation of fast-moving fronts originating from dam or levee breaches is a challenging task for small scale engineering projects. In this work, the use of fully three-dimensional Navier-Stokes (NS) equations and lattice Boltzmann method (LBM) is proposed for testing the validity of, respectively, macroscopic and mesoscopic mathematical models. Macroscopic simulations are performed employing an open-source computational fluid dynamics (CFD) code that solves the NS combined with the volume of fluid (VOF) multiphase method to represent free-surface flows. The mesoscopic model is a front-tracking experimental variant of the LBM. In the proposed LBM the air-gas interface is represented as a surface with zero thickness that handles the passage of the density field from the light to the dense phase and vice versa. A single set of LBM equations represents the liquid phase, while the free surface is characterized by an additional variable, the liquid volume fraction. Case studies show advantages and disadvantages of the proposed LBM and NS with specific regard to the computational efficiency and accuracy in dealing with the simulation of flows through complex geometries. In particular, the validation of the model application is developed by simulating the flow propagating through a synthetic urban setting and comparing results with analytical and experimental laboratory measurements.

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3