Adsorptive Detoxification of Congo Red and Brilliant Green Dyes Using Chemically Processed Brassica Oleracea Biowaste from Waste Water

Author:

Kanwal Ayesha1,Rehman Rabia1ORCID,Imran Muhammad1

Affiliation:

1. Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan

Abstract

Water pollution being a potential risk to mankind is treated in several ways which includes chemical treatments. Among them, adsorption took a prominent position for the removal of many hazardous dyes from waste water. Here in this study, an environment-friendly, inexpensive, and broadly available leaves of Brassica oleracea were utilized for adsorption of two carcinogenic dyes, i.e., Congo red and brilliant green. The adsorbent Brassica oleracea leaves were collected, dried, and characterized by FTIR and SEM and then utilized in batch manner for dye removal. Isothermal modeling was carried out on data obtained after experiment which show the best fitting of Langmuir with q max 42.553 and 103.093 mg.g-1 for Congo red (CR) and brilliant green (BG), respectively. Consequently, a homogenous, monolayer mode of adsorption was followed. Kinetic modeling supported pseudosecond order and Elovich model in most suitable manner. It was also found that a spontaneous, exothermic process provided by the values of thermodynamic parameters ( G ° , H ° , and S ° ) was calculated.

Publisher

Hindawi Limited

Subject

Surfaces and Interfaces,General Chemical Engineering,General Chemistry

Reference81 articles.

1. Health and environmental impacts of dyes: mini review;M. A. Hassaan;American Journal of Environmental Science and Engineering,2017

2. Removal of cationic dyes from aqueous solution by adsorption on peanut hull

3. Removal of synthetic dyes from wastewaters: a review

4. Adsorption — from theory to practice

5. Impact of textile dyes waste on aquatic environments and its treatment;S. Gita;Environment and Ecology,2017

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3