H2SA-ALSH: A Privacy-Preserved Indexing and Searching Schema for IoT Data Collection and Mining

Author:

Wu Guangjun1ORCID,Zhu Bingqing12ORCID,Li Jun12,Wang Yong1ORCID,Jia Yungang3

Affiliation:

1. Institute of Information Engineering, Chinese Academy of Sciences, Beijing 100080, China

2. School of Cyber Security, University of Chinese Academy of Sciences, Beijing 100080, China

3. National Computer Network and Information Security Management Center of Tianjin, Tianjin 300100, China

Abstract

Currently, smart devices of Internet of Things generate massive amount of data for different applications. However, it will expose sensitive information to external users in the process of IoT data collection, transmission, and mining. In this paper, we propose a novel indexing and searching schema based on homocentric hypersphere and similarity-aware asymmetric LSH (H2SA-ALSH) for privacy-preserved data collection and mining over IoT environments. The H2SA-ALSH collects multidimensional data objects and indexes their features according to the Euclidean norm and cosine similarity. Additionally, we design a c - k -AMIP searching algorithm based on H2SA-ALSH. Our approach can boost the performance of the maximum inner production (MIP) queries and top- k queries for a given query vector using the proposed indexing schema. Experiments show that our algorithm is excellent in accuracy and efficiency compared with other ALSH-based algorithms using real-world datasets. At the same time, our indexing scheme can protect the user’s privacy via generating similarity-based indexing vectors without exposing raw data to external users.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3