A Highly Accurate Technique to Obtain Exact Solutions to Time-Fractional Quantum Mechanics Problems with Zero and Nonzero Trapping Potential

Author:

Liaqat Muhammad Imran1ORCID,Khan Adnan1ORCID,Alam Md. Ashraful2ORCID,Pandit M. K.2ORCID

Affiliation:

1. National College of Business Administration and Economics, Lahore, Pakistan

2. Department of Mathematics, Jahangirnagar University, Savar, Dhaka, Bangladesh

Abstract

In this study, the highly accurate analytical Aboodh transform decomposition method (ATDM) in the sense of Caputo fractional derivative is used to determine the approximate and exact solutions of both linear and nonlinear time-fractional Schrodinger differential equations (SDEs) with zero and nonzero trapping potential that describe the nonrelativistic quantum mechanical activity. The Adomian decomposition method (ADM) and the Aboodh transform of Caputo’s fractional derivative are combined in this method. The recurrence and absolute error of the four problems are analyzed to evaluate the efficiency and consistency of the presented method. In addition, numerical results are also compared with other methods such as the fractional reduced differential transform method (FRDTM), the homotopy analysis method (HAM), and the homotopy perturbation method (HPM). The results obtained by the proposed method show excellent agreement with these methods, which indicates its effectiveness and reliability. This technique has the benefit of not requiring any minor or major physical parameter assumptions in the problem. As a result, it may be used to solve both weakly and strongly nonlinear problems, overcoming some of the inherent constraints of classic perturbation approaches. To solve nonlinear fractional-order differential equations, just a few computations are necessary. As a consequence, it outperforms homotopy analysis and homotopy perturbation approaches significantly. The procedure is quick, precise, and easy to implement. Convergence analysis of the series solution is also offered.

Publisher

Hindawi Limited

Subject

General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3