Larvicidal Effects of Nanoliposomes Containing Clove and Cinnamon Essential Oils, Eugenol, and Cinnamaldehyde against the Main Malaria Vector, Anopheles stephensi Liston

Author:

Sanei-Dehkordi Alireza12,Heiran Roghayeh3ORCID,Roozitalab Ghazaal4ORCID,Elahi Narges5,Osanloo Mahmoud6ORCID

Affiliation:

1. Department of Medical Entomology and Vector Control, School of Health, Hormozgan University of Medical Sciences, Bandarabbas, Iran

2. Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandarabbas, Iran

3. Department of Chemistry, Estahban Higher Education Center, Estahban 7451944655, Iran

4. Noncommunicable Disease Research Center, Fasa University of Medical Sciences, Fasa, Iran

5. Department of Tissue Engineering, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran

6. Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran

Abstract

The use of larvicides, especially in endemic regions, is recommended for malaria control. However, due to the excessive use of synthetic larvicides, resistance in mosquitoes and environmental pollution have been challenges. In the current study, nanoliposome containing clove and cinnamon essential oils and their major ingredients, i.e., eugenol and cinnamaldehyde, were first prepared; particle size and successful loading were investigated using DLS (Dynamic Light Scattering) and ATR-FTIR (Attenuated Total Reflection-Fourier Transform InfraRed) analysis. Larvicidal effects of the nanoliposomes and nonformulated samples were then investigated against Anopheles stephensi. The best-observed efficacy (LC50 5.4 μg/mL) was related to nanoliposomes containing eugenol with a particle size of 109 ± 4 nm. However, LC50 values of the other three nanoformulations were also around 10 μg/mL; all four prepared nanoformulations were thus introduced as natural larvicides for further investigations in the field conditions.

Funder

Fasa University of Medical Sciences

Publisher

Hindawi Limited

Subject

Insect Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3