Automotive Occupant Dynamics Optimization

Author:

Bennett J.A.1,Park G.J.1

Affiliation:

1. Engineering Mechanics Department, General Motors Research and Development Center, Warren, MI 48090, USA

Abstract

One of the more difficult optimal design tasks occurs when the data describing the system to be optimized is either highly nonlinear or noisy or both. This situation arises when trying to design restraint systems for automotive crashworthiness using the traditional lumped parameter analysis methods. The nonlinearities in the response can come from either abrupt changes in the occupants interaction with the interior or from relatively minor fluctuation in the response due to the interactions of two restraint systems such as belts and airbags. In addition the calculated response measures are usually highly nonlinear functions of the accelerations. Two approaches using an approximate problem formulation strategy are proposed. One approach uses a first-order approximation based on finite difference derivatives with a nonlocal step size. The second and more effective approach uses a second-order curve fitting strategy. Successful example problems of up to 16 design variables are demonstrated. A conservative design strategy using a derivative-based constraint padding is also discussed. The approach proves effective because analytical expressions are available for the second-order terms.

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Intelligent Protection;The Intelligent Safety of Automobile;2023-11-28

2. Reverse reconstruction of motorcycle-car accident based on response surface model and NSGA-II algorithm;International Journal of Crashworthiness;2020-06-05

3. Modeling and Simulation Study Based on Corpuscular Particle Method for Side Airbag Design;Journal of Computational and Theoretical Nanoscience;2013-08-01

4. Identification of validated multibody vehicle models for crash analysis using a hybrid optimization procedure;Structural and Multidisciplinary Optimization;2010-11-17

5. Design of the occupant protection system for frontal impact using the axiomatic approach;Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering;2008-03-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3