Effects of Adhesive Connection on Composite Action between FRP Bridge Deck and Steel Girder

Author:

Jiang Xu12,Luo Chengwei1,Qiang Xuhong12ORCID,Kolstein Henk2,Bijlaard Frans2

Affiliation:

1. College of Civil Engineering, Tongji University, Shanghai 200092, China

2. Faculty of Civil Engineering and Geoscience, Delft University of Technology, 2628 CN Delft, Netherlands

Abstract

The FRP-steel girder composite bridge system is increasingly used in new constructions of bridges as well as rehabilitation of old bridges. However, the understanding of composite action between FRP decks and steel girders is limited and needs to be systematically investigated. In this paper, depending on the experimental investigations of FRP to steel girder system, the Finite Element (FE) models on experiments were developed and analyzed. Comparison between experiments and FE results indicated that the FE models were much stiffer for in-plane shear stiffness of the FRP deck panel. To modify the FE models, rotational spring elements were added between webs and flanges of FRP decks, to simulate the semirigid connections. Numerical analyses were also conducted on four-point bending experiments of FRP-steel composite girders. Good agreement between experimental results and FE analysis was achieved by comparing the load-deflection curves at midspan and contribution of composite action from FRP decks. With the validated FE models, the parametric studies were conducted on adhesively bonded connection between FRP decks and steel girders, which indicated that the loading transfer capacity of adhesive connection was not simply dependent on the shear modulus or thickness of adhesive layer but dominated by the in-plane shear stiffness K.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Hardware and Architecture,Mechanical Engineering,General Chemical Engineering,Civil and Structural Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3