Affiliation:
1. Business School, Zhijiang College of Zhejiang University of Technology, Hangzhou, Zhejiang, China
2. School of Electrical Engineering, University of Jinan, Jinan 250022, China
Abstract
Since cross-border e-commerce involves the export and import of commodities, it is affected by many policies and regulations, resulting in some special requirements for the recommendation system, which makes the traditional collaborative filtering recommendation algorithm less effective for the cross-border e-commerce recommendation system. To address this issue, a simple yet effective cross-border e-commerce personalized recommendation is proposed in this paper, which integrates fuzzy association rule and complex preference into a recommendation model. Under the constraint of fuzzy association rules, a hybrid recommendation model based on user complex preference features is constructed to mine user preference features, and personalized commodities recommendation is realized according to user behavior preference. Compared with the traditional recommendation algorithm, the improved algorithm reduces the impact of data sparsity. The experiment also verifies that the improved fuzzy association rule algorithm has a better recommendation effect than the existing state-of-the-art recommendation models. The recommendation system proposed in this paper has better generalization and has the performance to be applied to real-life scenarios.
Subject
General Engineering,General Mathematics
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献