Quasiconformal Mapping Kernel Machine Learning-Based Intelligent Hyperspectral Data Classification for Internet Information Retrieval

Author:

Liu Jing1,Qiao Yulong1ORCID

Affiliation:

1. College of Information and Communication Engineering, Harbin Engineering University, Harbin 150001, China

Abstract

Intelligent internet data mining is an important application of AIoT (Artificial Intelligence of Things), and it is necessary to construct large training samples with the data from the internet, including images, videos, and other information. Among them, a hyperspectral database is also necessary for image processing and machine learning. The internet environment provides abundant hyperspectral data resources, but the hyperspectral data have no class labels and no so high value for applications. So, it is important to label the class information for these hyperspectral data through machine learning-based classification. In this paper, we present a quasiconformal mapping kernel machine learning-based intelligent hyperspectral data classification algorithm for internet-based hyperspectral data retrieval. The contributions include three points: the quasiconformal mapping-based multiple kernel learning network framework is proposed for hyperspectral data classification, the Mahalanobis distance kernel function is as the network nodes with the higher discriminative ability than Euclidean distance-based kernel function learning, and the objective function of measuring the class discriminative ability is proposed to seek the optimal parameters of the quasiconformal mapping projection. Experiments show that the proposed scheme is effective for hyperspectral image classification and retrieval.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3