Experimental Research Based on the Optical Fiber Sensing Technology for a Jacked PHC Pipe Pile Penetration Process

Author:

Sang Songkui1ORCID,Wang Yonghong1ORCID,Ma Jiaxiao1,Zhang Mingyi1

Affiliation:

1. School of Civil Engineering, Qingdao University of Technology, Qingdao, China

Abstract

The aim of this work is to explore the influence of the end resistance and shaft resistance regarding the mechanism for jacked pile penetration and the load-transfer rule during the penetration process. A full-scale field test was conducted in an actual project located in Dongying, Shandong Province, China. In this test, the axial strain experienced by two closed Prestressed High-strength Concrete (PHC) pipe piles during jacking into layered soil was monitored successfully using Fiber Bragg Grating (FBG) sensors mounted on the pile shaft. The experimental results show that FBG sensors have a good stability, strong antijamming performance, and can effectively monitor the pile stress. The variation law of the jacking force reflects the distribution of the soil layer, and the hardness of the soil layer at the pile end limits the pile force. When the pile end enters the silt layer from the clay layer, the jacking force and shaft resistance increase by 2.5 and 1.7, respectively. The shaft resistance accounted for 44.99% of the jacking force. The end resistance is affected by the mechanical properties of soil, and the end resistance of the silt layer is approximately twice that of the clay layer. The end resistance of the silt layer accounted for 59.84% of the jacking force. When the pile end enters the soft soil layer from the hard soil layer, the impact of the pile driving speed and the tangential force on the surface of the pile body must both be considered. During the pile penetration process, as the penetration depth increases, the radial stress on the pile side at a given depth is gradually released, while the shaft resistance at the pile side degrades significantly.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3