Critical Factors Analysis of Severe Traffic Accidents Based on Bayesian Network in China

Author:

Chen Hong1ORCID,Zhao Yang1ORCID,Ma Xiaotong1ORCID

Affiliation:

1. College of Transportation Engineering, Chang’an University, Xi’an 710064, China

Abstract

The purpose of this study is to minimize the negative influences of the severe traffic accidents in China by profoundly analyzing the complex coupling relations among accident factors contributing to the single-vehicle and multivehicle traffic accidents with the Bayesian network (BN) crash severity model. The BN model was established by taking the critical factors identified with the improved grey correlation analysis method as node variables. The severe traffic accident data collected from accident reports published in China were used to validate this model. The model’s efficiency was validated objectively by comparing the conditional probability obtained by this model with the actual value. The result shows that the BN model can reflect the real relations among factors and can be seen as the target network for the severe traffic accidents in China. Besides, based on BN’s junction tree engine, five-factor combination sequences for the number of deaths and three-factor combination sequences for the number of injuries were ranked according to the severity degree to reveal the critical reasons and reduce the massive traffic accidents damage.

Funder

Natural Science Foundation of Zhejiang Province

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3