Blue Light Irradiation Induces Human Keratinocyte Cell Damage via Transient Receptor Potential Vanilloid 1 (TRPV1) Regulation

Author:

Yoo Ju Ah.1,Yu Eunbi1,Park See-Hyoung2ORCID,Oh Sae Woong1,Kwon Kitae1,Park Se Jung1,Kim Hyeyoun1,Yang Seyoung1,Park Jung Yoen1,Cho Jae Youl3ORCID,Kim Youn-Jung4ORCID,Lee Jongsung1ORCID

Affiliation:

1. Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon City, 16419 Gyunggi Do, Republic of Korea

2. Department of Bio and Chemical Engineering, Hongik University, 30016 Sejong City, Republic of Korea

3. Molecular Immunology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon City, 16419 Gyunggi Do, Republic of Korea

4. Department of Marine Sciences, Incheon National University, 22012 Incheon City, Republic of Korea

Abstract

Although blue light has been reported to affect skin cells negatively, little is known about its action mechanisms in skin cells. Therefore, we investigated the role of the transient receptor potential vanilloid 1 (TRPV1) in blue light-induced effects on human keratinocytes and its underlying mechanisms. Blue light decreased cell proliferation and upregulated TRPV1 expression. Blue light also suppressed the epidermal growth factor receptor- (EGFR-) mediated signaling pathway by reducing the protein levels of EGFR and suppressing the EGFR/PI3K/AKT/GSK3β/FoxO3a pathway. The blue light-induced effect in cell proliferation was reversed by TRPV1 siRNA, but not capsazepine, a TRPV1-specific antagonist. In addition, blue light irradiation increased the production of reactive oxygen species (ROS) and tumor necrosis factor-α (TNF-α). Blue light irradiation also increased both phosphorylation levels of TRPV1 and calcium influx. The blue light-induced increase in production of ROS and TNF-α was reversed by capsazepine. Furthermore, the blue light-induced increase in production of TNF-α was attenuated by SP600125 or PDTC. These findings show that blue light regulates cell survival and production of ROS and TNF-α; its effects are mediated via TRPV1. Specifically, the effects of blue light on cell proliferation are mediated by upregulating TRPV1, a negative regulator of EGFR-FoxO3a signaling. Blue light-induced production of ROS and TNF-α is also mediated through increased calcium influx via TRPV1 activation.

Funder

Sungkyunkwan University

Publisher

Hindawi Limited

Subject

Cell Biology,Ageing,General Medicine,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3