The Dynamic Change of Pore Structure for the Low-Rank Coal with Various Pretreatment Temperatures: A Case Study from Southwestern Ordos Basin

Author:

Li Teng123ORCID

Affiliation:

1. College of Petroleum Engineering, Xi’an Shiyou University, Xi’an, Shaanxi 710065, China

2. Shandong Key Laboratory of Depositional Mineralization & Sedimentary Mineral, Shandong University of Science and Technology, Qingdao, Shandong 266590, China

3. Shaanxi Key Laboratory of Advanced Stimulation Technology for Oil & Gas Reservoirs, Xi’an Shiyou University, Xi’an, Shaanxi 710065, China

Abstract

The pore characteristics of the low-rank coal are different from medium- and high-rank coals. The low-temperature N2 adsorption (LP-N2A) measurements with a single low-rank coal were launched, and the dynamic change of pore structures under various pretreatment temperatures from 120°C to 300°C was studied. The isothermal curves of the DFS coal sample feature IV type, the hysteresis loops convert from H4 type to H2 type, and the hysteresis loops tend to be closed with the increased pretreatment temperatures. The mesopores are dominant in the DFS coal. The dynamic of pore volume (PV) and pore specific surface area (SSA) features the three-step-style change with the cut-off temperature points at 150°C and 240°C, and this has a relationship with the loss of the moisture and volatiles in the DFS coal sample. The pores with an aperture below 10 nm are the dominant mesopores in the DFS coal, and the mesopore volume features bimodal pattern distribution with a higher left peak of approximately 1.7 nm and a lower right peak of approximately 3-5 nm, and the right peak continuously right shift with the increase pretreatment temperatures. The total mesopore volume decreases with the upgrading temperatures, while the ratio of pores greater than 5 nm increases. Finally, the mesopore evolution model with the increased pretreatment temperatures was summarized.

Funder

Shandong Key Laboratory of Depositional Mineralization & Sedimentary Mineral Open Fund

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3