Affiliation:
1. College of Mathematics and Statistics, Hubei Normal University, Huangshi 435002, China
Abstract
This paper concentrates on global exponential stability and synchronization for complex-valued neural networks (CVNNs) with deviating argument by matrix measure approach. The Lyapunov function is no longer required, and some sufficient conditions are firstly obtained to ascertain the addressed system to be exponentially stable under different activation functions. Moreover, after designing a suitable controller, the synchronization of two complex-valued coupled neural networks is realized, and the derived condition is easy to be confirmed. Finally, some numerical examples are given to demonstrate the superiority and feasibility of the presented theoretical analysis and results.
Funder
National Natural Science Foundation of China
Subject
General Engineering,General Mathematics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献