Optimal Design of Bus Stop Locations Integrating Continuum Approximation and Discrete Models

Author:

Luo Xiaoling12,Fan Wenbo1ORCID,Jiang Yangsheng1,Zhang Jun3

Affiliation:

1. School of Transportation and Logistics, Southwest Jiaotong University, Chengdu, Sichuan 611756, China

2. Chongqing Jiaotong University, Chongqing Key Laboratory of Traffic & Transportation, Chongqing 400074, China

3. Office of Science Research & Development, Southwest Jiaotong University, Chengdu, Sichuan 611756, China

Abstract

Although transit stop location problem has been extensively studied, the two main categories of modeling methodologies, i.e., discrete models and continuum approximation (CA) ones, seem have little intersection. Both have strengths and weaknesses, respectively. This study intends to integrate them by taking the advantage of CA models’ parsimonious property and discrete models’ fine consideration of practical conditions. In doing so, we first employ the state-of-the-art CA models to yield the optimal design, which serves as the input to the next discrete model. Then, the stop location problem is formulated into a multivariable nonlinear minimization problem with a given number of stop location variables and location constraint. The interior-point algorithm is presented to find the optimal design that is ready for implementation. In numerical studies, the proposed model is applied to a variety of scenarios with respect to demand levels, spatial heterogeneity, and route length. The results demonstrate the consistent advantage of the proposed model in all scenarios as against its counterparts, i.e., two existing recipes that convert CA model-based solution into real design of stop locations. Lastly, a case study is presented using real data and practical constraints for the adjustment of a bus route in Chengdu (China). System cost saving of 15.79% is observed by before-and-after comparison.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Bimodal transit design with heterogeneous demand elasticity under different fare structures;Transportmetrica A: Transport Science;2023-07-05

2. Continuum Approximation Model for Transit Service Design with Stochastic Demand;Journal of Advanced Transportation;2022-08-31

3. Joint design of shared-bike and transit services in corridors;Transportation Research Part C: Emerging Technologies;2021-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3