Stability Analysis of Surrounding Rock in Circular Tunnels Based on Critical Support Pressure

Author:

Fan Hao1ORCID,Wang Lianguo1ORCID,Wang Kai1ORCID

Affiliation:

1. State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Xuzhou 221116, China

Abstract

Accurate calculation for the critical support pressure of tunnels plays an important role in tunnel stability evaluation and support design. In this study, a mechanical model for circular tunnels is developed. Considering the intermediate principal stress and strain-softening characteristic of rock mass, the critical support pressure when the plastic zone and damage zone begin to occur is determined based on the unified strength criterion and strain-softening model. Through the example study, the critical support pressure under different intermediate principal stress coefficient is solved. Furthermore, the effect of initial field stress, softening coefficient, and maximum damage variable on the critical support pressure are also discussed. The results show that the critical support pressure and radii of plastic and damage zones all decrease with the increase of the intermediate principal stress coefficient. The larger the initial field stress, the larger the critical support pressure. The softening coefficient and maximum damage variable of rock mass has no influence on the critical support pressure when the plastic zone begins to form, but has a significant effect on the critical support pressure when the damage zone begins to form. As softening coefficient increases and maximum damage variable decreases, the critical support pressure when the damage zone which begins to form increases. Data presented in this contribution provide significant theoretical insights into evaluating tunnel stability and support system reliability.

Funder

National Key Research and Development Program of China

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3