Affiliation:
1. State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Xuzhou 221116, China
Abstract
Accurate calculation for the critical support pressure of tunnels plays an important role in tunnel stability evaluation and support design. In this study, a mechanical model for circular tunnels is developed. Considering the intermediate principal stress and strain-softening characteristic of rock mass, the critical support pressure when the plastic zone and damage zone begin to occur is determined based on the unified strength criterion and strain-softening model. Through the example study, the critical support pressure under different intermediate principal stress coefficient is solved. Furthermore, the effect of initial field stress, softening coefficient, and maximum damage variable on the critical support pressure are also discussed. The results show that the critical support pressure and radii of plastic and damage zones all decrease with the increase of the intermediate principal stress coefficient. The larger the initial field stress, the larger the critical support pressure. The softening coefficient and maximum damage variable of rock mass has no influence on the critical support pressure when the plastic zone begins to form, but has a significant effect on the critical support pressure when the damage zone begins to form. As softening coefficient increases and maximum damage variable decreases, the critical support pressure when the damage zone which begins to form increases. Data presented in this contribution provide significant theoretical insights into evaluating tunnel stability and support system reliability.
Funder
National Key Research and Development Program of China
Subject
Civil and Structural Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献