The Hybrid Solar-RF Energy for Base Transceiver Stations

Author:

Nguyen Cuong V.1,Nguyen Minh T.2ORCID,Quyen Toan V.3,Le Anh M.4,Truong Linh H.5

Affiliation:

1. Institue of Research and Development, Duy Tan University, Da Nang 550000, Vietnam

2. Department of Electrical Engineering, Thai Nguyen University of Technology, Thai Nguyen 24000, Vietnam

3. School of Electronics Engineering, Kyungpook National University, Daegu 41566, Republic of Korea

4. College of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu 30013, Taiwan

5. Department of Industrial Engineering and Engineering Management, National Tsing Hua University, Hsinchu 30013, Taiwan

Abstract

The base transceiver stations (BTS) are telecom infrastructures that facilitate wireless communication between the subscriber device and the telecom operator networks. They are deployed in suitable places having a lot of freely propagating ambient radio frequency (RF) and solar energies. This paper is aimed at converting received ambient environmental energy into usable electricity to power the stations. We proposed a hybrid energy harvesting system that can collect energy from RF and solar energies at the same time. The sources are combined to provide to a significant amount, to contribute to operational expenditures that reduce energy costs, and to improve the energy efficiency of the base station sites in rural areas from the most common renewable resources since the base stations are major consumers of cellular networks. The hybrid systems are designed with circuits, simulated, and compared to show their good performance to the base stations. PSIM, PROTEUS, and MATLAB software are used to simulate for evaluating the voltage and the current output of the hybrid systems that meet the power requirements. The design and simulation results show the feasibility of our proposed method with the battery storage that can be deployed not only in real base stations but also for other electrical operated systems.

Funder

Thai Nguyen University of Technology (TNUT), Vietnam

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3